Recommended Links

Monday, January 8, 2007

Blood Oxygenation

Blood oxygenation is measured in several ways, but the most important measure is the hemoglobin (Hb) saturation percentage. This is a non-linear (sigmoidal) function of the partial pressure of oxygen. About 98.5% of the oxygen in a sample of arterial blood in a healthy human breathing air at normal pressure is chemically combined with the Hb. Only 1.5% is physically dissolved in the other blood liquids and not connected to Hb. The hemoglobin molecule is the primary transporter of oxygen in mammals and many other species .

With the exception of pulmonary and umbilical arteries and their corresponding veins, arteries carry oxygenated blood away from the heart and deliver it to the body via arterioles and capillaries, where the oxygen is consumed; afterwards, venules and veins carry deoxygenated blood back to the heart.

Differences in infrared absorption between oxygenated and deoxygenated blood form the basis for realtime oxygen saturation measurement in hospitals and ambulances.

Under normal conditions in humans at rest, haemoglobin in blood leaving the lungs is about 98-99% saturated with oxygen. In a healthy adult at rest, deoxygenated blood returning to the lungs is still approximately 75% saturated. Increased oxygen consumption during sustained exercise reduces the oxygen saturation of venous blood, which can reach less than 15% in a trained athlete; although breathing rate and blood flow increase to compensate, oxygen saturation in arterial blood can drop to 95% or less under these conditions. Oxygen saturation this low is considered dangerous in an individual at rest (for instance, during surgery under anesthesia): "As a general rule, any condition which leads to a sustained mixed venous saturation of less than 50% will be poorly tolerated and a mixed venous saturation of less than 30% should be viewed as a medical emergency."

A fetus, receiving oxygen via the placenta, is exposed to much lower oxygen pressures (about 20% of the level found in an adult's lungs) and so fetuses produce another form of hemoglobin with a much higher affinity for oxygen (hemoglobin F) in order to extract as much oxygen as possible from this sparse supply.

Substances other than oxygen can bind to the hemoglobin; in some cases this can cause irreversible damage to the body. Carbon monoxide for example is extremely dangerous when absorbed into the blood. When combined with the hemoglobin, it irreversibly makes carboxyhemoglobin which reduces the volume of oxygen that can be carried in the blood. This can very quickly cause suffocation, as oxygen is vital to many organisms (including humans). This damage can occur when smoking a cigarette (or similar item) or in event of a fire. Thus carbon monoxide is considered far more dangerous than the actual fire itself because it reduces the oxygen carrying content of the blood.

No comments: